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Outline

• the problem and its history

• if you wish: a little bit about supersymmetry

• first step: supersymmetric representation for
norm–dependent ensembles

• general case: supersymmetric representation for arbitrary
rotation invariant ensembles

• some results beyond orthogonal polynomials
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The Problem and its History

Efetov’s supersymmetry approach (early 80’s) based on
Gaussian assumption for probability densities.

physics: acceptable because of local universality
mathematics: fundamental restriction of supersymmetry ?

Hackenbroich, Weidenmüller (1995): universality proof involving
supersymmetry and twofold asymptotics, not exact

Efetov, Schwiete, Takahashi (2004): superbosonization

TG (2006): algebraic duality, explicit construction

Littelmann, Sommers, Zirnbauer (2007): rigorous, threefold way
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