Universality in complex Wishart ensembles

M. Mo: arXiv:0809. 0, arXiv:0& . 8

Eigenvalue statistics of complex Wishart ensembles

Multiple Laguerre polynomials and Riemann-Hilbert problem

Results

 N_N has distinct eigenvalues, N_0 of them, and N_0 of them a.

$$M$$
 N and as $N o$, both N_0 , $N o$ and $N o$ $N o$ and $N o$ $N o$.

Universality: Eigenvalue correlations given by the Sinekernel in the bulk of the spectrum and Airy kernel in the lim

Global eigenvalue statistics

Studied by Bai, Choi and Silverstein with Stieltjes transform.

$$m_G(z)$$
 $\sim \frac{1}{-z}dG(x)$ z \mathbb{C}^+ z $\mathbb{C}: Im(z)$ 0

The Stieltjes transform of the limiting eigenvalue distribution satis es

$$m(z) \sim \frac{1}{t(c-c-czm)-z}dH(t)$$

H(t): limiting eigenvalue distribution of N.

Local eigenvalue statistics

Most results assumed the covariance matrix, $\ _N$ is a nite rank perturbation of the identity matrix.

This is one of the few results for non-spiked models.

Baik, Ben-Arous and Péché (0): eigenvalue correlation functions in terms of a determinantal formula.

Multiple Laguerre polynomials

Generalization of Laguerre polynomials that are orthogonal to multiple weights: $x^{M-N}e^{-Ma_j^*x}$. E.g.

(Bleher and Kuijlaars, Desrosiers and Forrester) Correlation kernel of complex Wishart ensembles can be expressed in terms of multiple Laguerre polynomials.

Multiple Laguerre polynomials are solutions of Riemann-

Riemann surface depends on parameters and di cult to determine sheet structure in this case.

Stieltjes transform

De ne \underline{F} by

$$\underline{F} \sim (c - c)I_0 + cF$$

then the Stieltjes transform m_{F} satis es

$$m_{\underline{F}}(z) - \left(z - c \frac{tdH(t)}{\mathbb{R} + tm_{\underline{F}}}\right)^*$$

In our case, dH(t) is

$$dH(x) \sim (-)_x + a$$

Gives us an algebraic equation

$$z = - + \tilde{c} - + c - \frac{a}{+a}$$

Observations:

. The equation has solutions behaves like

$$(z) = \frac{1}{z} + O(z^{-}), \quad z \to z$$

$$(z) = \frac{c(z^{-})}{z} + O(z^{-}), \quad z \to z$$

$$(z) = \frac{1}{a} + \frac{c}{z} + O(z^{-}), \quad z \to z$$

. $m_{\underline{F}}$ is the solution \Box . So \Box has branch cut on the support of $\underline{F}.$

Lemma 1 If z . $\mathrm{supp}(\underline{F})$, then $m \not= m_{\underline{F}}(z)$ satisfies the following.

1.
$$m \mathbb{R} 0$$
;

2.
$$\frac{\sim}{m}$$
 . $supp(H)$;

3.
$$z'(m)$$
 0.

Conversely, if m satisfies 1-3, then $z \not = z(m)$. $supp(\underline{F})$.

 $z' \sim 0$ are the potential end points of the support.

Zeros of the polynomials

$$a = (-c) + (a + (-c) + a + (-c) + a) + (+a) + (-c) + a) + (-c) + (-c)$$

Discriminant positive, real roots , , Discriminant negative, real roots , .

Complement of support: E.g. when there are real roots,

$$supp(\underline{F})^{c} \wedge (-0) (0,) (0,) (0,)$$

k are given by

So if we have , , then support consists of intervals, otherwise support has interval.

-		_
_		_
_		

Summary

Studied complex Wishart ensembles whose covariance matrix has N_0 eigenvalues—and N0 eigenvalues and N0 eigenvalues are an eigenvalues.

One of the few cases when results was obtained for nonspiked models.

Correlation kernel given by Sine-kernel in bulk and Airy kernel in edge. Tracey-Widom distribution for largest eigenvalue.

Uses Stieltjes transform to overcome di culties in the application of Riemann-Hilbert analysis.

When covariance matrix has nitely many distinct eigenvalues, Stieltjes transform gives a Riemann surface and the analysis can be generalized to the case when the Riemann surface has less than or equal to complex branch points.