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. v vertices

. nj j-gons (j ≥ 3 ≥ d , d fixed but arbitrary)

. ` triangles carrying a piece of path forming exactly L loops

. a marked ji-gon (ji ≥ 1) with a marked edge as i-th boundary (1 ≤ i ≤ k)

For n ∈ N, it admits a representation as a formal hermitian matrix model [1, 6]:
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. equalities between formal series in t , of polynomials in tj ’s and rational functions in xi ’s

. c for cumulant

. analytic continuation for n ∈ R

We proved an algorithm to compute all W(g)
k ’s

2 - Interest for the O(n) model
Critical points . Exhibits critical points [2] different from pure gravity at tc > 0, for 0 < |n| ≤ 2

For n = −2 cos πg (g ∈]0, 1[), several continuum limits

. Believed to be CFTc ⊗ gravity, with
c = 1 − 6

(
g̃1/2 − g̃−1/2

)2
where g̃ = ε(1 − g) + 2p + 1

→ reach non rational CFT’s by the continuum limit of a microscopic model

Combinatorics → Counting discrete surfaces with additional structure

. Duality to q = n2 Potts model

. Fully packed loops ↔ dimer configurations when V(x) = x2/2

Matrix models → A direction of generalization of the algebraic geometry tools
developed for the 1-matrix model (n = 0) [5]

3 - The method of loop equations
Loop equations = change of variables in the matrix integrals

Powerful way to prove automatically combinatorial recursion relations [7]
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Combinatorial . in each variable (for k ≥ 1), W(g)
k (x1, . . . , xk) is
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There exists a set of loop equations determining uniquely
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k satisfying these analytical properties

4 - Analytical properties of W(g)
k

The one-cut property implies ∀x ∈ [a(t), b(t)] and ε → 0 :
[3] W(0)

1 (x + iε) + W(0)
1 (x − iε) + n W(0)

1 (−x) = V′(x)

[3] W(0)
2 (x1 + iε, x2) + W(0)

2 (x1 − iε, x2) + n W(0)
2 (−x1,

x xx 2

2
W(g )

2 (x1 −t x/x
W(g)




