Truncations of random unitarymatrices revisited

Boris Khoruzhenko

Queen Mary, University of London

joint review with H.-J. Sommers: Non-Hermitian Random Matrix Ensembles, arXiv:0911.5645, to appear in the Oxford Handbook of Random Matrix Theory

Choose ^a unitary matrix at random and partition it:

$$
U = \begin{pmatrix} T & S \\ Q & R \end{pmatrix} \rightarrow T \qquad T \text{ is } m \times
$$

(1) **Quantum transport problems** (Beenakker'97, poster by Nick Simm)

Additive stats of EVs of $\mathbf{T}\mathbf{T}^{\dagger}$ describe phys quantities of interest, i.e. $\mathrm{tr}\, \mathbf{T}\mathbf{T}^{\dagger}$ for conductance of quasi one-dimensional wires

- (2) **Open chaotic sys** (Fyodorov & Sommers, '97 Zyczkowski & S. '00) ˙Eigenvalues of T are used to model resonances
- (3) **Combinatorics of vicious walkers**(Novak '09)

 $<|\mathrm{tr}\mathbf{T}|^N>$ τ enumerates configs of random-turn vicious walkers

(4) **Random determinants** (Fyodorov & K., '07), e.g.,

$$
\left\langle \frac{1}{|\det(\mathbf{I}-\mathbf{z}\mathbf{A})|^2} \right\rangle_A = \int \left\langle \frac{1}{\det(\mathbf{I}-|\mathbf{z}|^2 \mathbf{T}\mathbf{T}^\dagger, \mathbf{A}\mathbf{A}^\dagger)} \right\rangle_A \mathrm{d} \mathbf{n} \times (\mathbf{T})
$$

for complex random $\mathbf{n}\times\mathbf{n}$ matrices \mathbf{A} with invariant distribution.

Singular values of T (1,4); eigenvalues of T (2,3)

Truncation map: U \rightarrow T, U is $n \times n$, T is $m \times p$, $m \le p$

Have $TT^{\dagger} + SS^{\dagger} = I$ by unitarity. If $\mathbf{n} \geq \mathbf{m} + \mathbf{p}$ then (generically) SS^{\dagger} has
reak m and the image of $\mathbf{U}(\mathbf{n})$ is the antire metrix holl $TT^{\dagger} \leq \mathbf{I}$ rank ^m ${\bf m}$ and the image of ${\bf U}({\bf n})$ is the entire matrix ball ${\bf T}{\bf T}^{\dagger} \leq {\bf I}$.

Theorem 1 (Friedman&Mello '85, Fyodorov&Sommers '03, Forrester '06) For $n \ge m + p$

$$
\mathrm{d} \ n \times_{\mathbf{A}} (\mathbf{T}) \quad \det(\mathbf{I} - \mathbf{T} \mathbf{T}^{\dagger})^{n-} \quad \mathbf{A} \quad \leq (\mathbf{T}) \mathrm{d} \mathbf{T}
$$

where dT is the Cartesian volume element in $C \stackrel{\times}{ } ^s$. For invariant f

$$
\int_{\mathbf{C}^m} \mathbf{f}(\mathbf{T}\mathbf{T}^\dagger) \mathrm{d}_{n \times \mathbf{A}}(\mathbf{T}) = \text{const.} \times \n= \int_{\mathbf{C}^m} \mathbf{f}(\mathbf{Z}\mathbf{Z}^\dagger) \det(\mathbf{Z}\mathbf{Z}^\dagger)^{\mathbf{A}-} \det(\mathbf{I} - \mathbf{Z}\mathbf{Z}^\dagger)^{n-} \xrightarrow{-\mathbf{A}} \leq (\mathbf{Z}) \mathrm{d}\mathbf{Z}
$$

These are just marginals of the jpdf:

$$
R(z_1,...,z_{}) = \frac{m!}{(m-k)!} \int d^2 z_{+1} ... \int d^2 z_{-} P(z_1,...,z_{-},z_{+1},...,z_{-}),
$$

The EV corr fncs for truncations can be obtained by the method of OPs.

For the rotation invariant weights, $w(z) = w(|z|)$, OPs are just powers z^l : $\int d^2z w(z) z z^* = h$, leading to * $=$ $\bf h$, leading to

$$
\mathbf{R}(\mathbf{z}_1,\ldots,\mathbf{z})=\prod_{l=1}\mathbf{w}(\mathbf{z}_l)\,\det(\mathbf{K}(\mathbf{z},\mathbf{z}));\qquad \mathbf{K}(\mathbf{u},\mathbf{v})=\sum_{l=0}^{-1}\frac{(\mathbf{u}\mathbf{v}^*)^l}{\mathbf{h}}
$$

For truncated unitaries the sum on the rhs is the **binomial series** for $(1$ of the incomplete Beta function. $-$ uv^{*} $^{*})^{-\left(n\right)}$ $-$ +1) truncated after m terms. This gives the kernel in terms
plete Beta function

Kernel

Incomplete Beta fnc:

$$
\mathbf{I}_{\alpha}(\mathbf{a},\mathbf{b})=\frac{1}{\mathbf{B}(\mathbf{a},\mathbf{b})}\int_{0}^{\alpha}\mathbf{t}^{-1}(1-\mathbf{t})^{-1}\,\mathbf{dt}
$$

We have

$$
K(u, v) = \frac{n - m}{(1 - uv^*)^{n-1}} \frac{I_{1-}}{(1 - uv^*)^{n-1}}
$$

This representation seems to be new. It is convenient for asymptoticanalysis. Also one can handle more general $w(z) = |z|^{2\beta}(1 - |z|^2)$.

Compare with the complex Ginibre ($d\mu(J)$ e $^{-\, \mathrm{tr}}$ $\,$ $\, \mathrm{d} J$). There $w(z) = e^{-|z|^2}$, have truncated exponential series for the kernel:

$$
\mathbf{K}(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{n}}{-\mathbf{e}} \quad \frac{\Gamma(\mathbf{n}, \mathbf{u}\mathbf{v}^*)}{\Gamma(\mathbf{n})} \quad \text{with} \quad \Gamma(\mathbf{n}, \mathbf{x}) = \int_x^\infty \mathbf{e}^{-\mathbf{t}^{n-1} d\mathbf{t}}
$$

Strong non-unitarity - EV density in the bulk

Strong non-unitarity: boundary of EV distribution

V Brunel Workshop on Random Matrices 19 Dec 09

Strong non-unitarity, locally at the origin

Scale z

Weak non-unitarity: EV density and correlations

Scaling z accordingly,
$$
z = \left(1 - \frac{y}{m}\right) e^{i\varphi_0 + i \frac{\varphi_j}{m}}
$$
, one finds the EV density

$$
\mathbf{R}_1(\mathbf{z}) \qquad \frac{\mathbf{m}^2}{(1-1)!} \int_0^1 e^{-2} \mathbf{t} \, \mathrm{d} \mathbf{t} \, , \quad \mathbf{m} \to \quad \text{and I is finite.}
$$

(Życzkowski & Sommers, '00) and correlations

$$
\mathbf{R}(\mathbf{z}_1,\ldots,\mathbf{z}) \quad \left(\frac{\mathbf{m}^2}{\mathbf{m}^2}\right) \prod_{i=1} \frac{(2\mathbf{y})^{i-1}}{(1-1)!} \det \left(\int_0^1 e^{-(\mathbf{z}+\mathbf{y}+i(\boldsymbol{\varphi}_i-\boldsymbol{\varphi}_j))} \mathbf{t} \, \mathrm{d}\mathbf{t} \right)
$$

This is ^a particular case of ^a 'universal' expression describing EVcorrelations for random contractions (Fyodorov & Sommers '03).

Interestingly, a different ensemble, $\mathbf{J} = \mathbf{H} + \mathrm{i} \mathbf{W}$, leads to the same form
of earrelations (Evederay & K, 200), Here \mathbf{H} is drawn from the CUE of correlations (Fyodorov & K. '99). Here H is drawn from the GUE, $\Rightarrow 0$
ond W is a diagonal metrix with L1's and m zeros. and $\bf W$ is a diagonal matrix with $\bf l$ 1's and $\bf m$ zeros.

Conclusion