Outline

Critical random matrix ensembles

Perturbation series for fractal dimensions

- Strong multifractality
- Weak multifractality

• Conjecture: $= 1 - D_1/d$

Summary

Well accepted conjectures

• Berry, Tabor (1977):

Integrable systems = Poisson statistics

 $(\Delta + E)\Psi = 0$

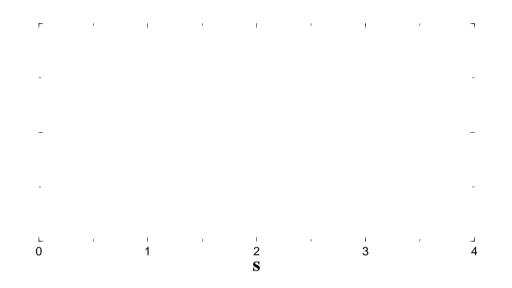
3-d Anderson model at metal-insulator transition

3-d Anderson model

$$H = \sum_{i} a_{i} a_{i} - \sum_{j = \text{adjacent to } i} a_{j} a_{i}$$

i=i.i.d. random variables between -W/2 and W/2

Spectral characteristics of 3-d Anderson model at metal-insulator transition



Characteristic features of intermediate statistics

•

Random matrix models of intermediate statistics

$$M_{ij} = j_{ij} + V(i - j)$$

Typically:

$$V(i-j) \qquad \frac{g}{|i-j|}$$

Critical power law banded random matrices

(Mirlin et al (1996))

 $N \times N$ Hermitian matrices whose elements, H_{ij} , are i.i.d. Gaussian variables (real for = 1 and complex for = 2) with zero mean $H_{ii} = 0$ and the variance $|H_{ii}|^2 = 1$ / and

$$|H_{ij}|^2 = \left(1 + \frac{(i - j)^2}{b^2}\right)^{-1}$$
 for $i = j$

Perturbation series: (Mirlin, Evers (2000))

• b 1:
$$D_q = 1 - q/(2 b)$$
, $= 1/(2 b)$. $D_q = 1 - q$

$$D_q = 1 - q$$

• b 1: (c = 1 for = 1, c =
$$\sqrt{8}$$
 for = 2)

$$D_q = 4bc \frac{(q - 1/2)}{(q)}, = 1 - 4bc$$

$$D_{q} = \frac{(q-1/2)}{(q)}(1 -)$$

 $D_1 = 1 -$

Absence of universality for spectral statistics

Ruijsennars-Schneider ensemble

(E.B., Schmit, Giraud (2009))

Ruijsenaars - Schneider classical integrable model

$$H(p,q) = \sum_{j=1}^{N} \cos(p_j) \prod_{k=j} \left(1 - \frac{\sin^2 a}{\sin^2 \frac{\mu}{2} (q_j - q_k)} \right)^{1/2}$$

Ruijsenaars - Schneider ensemble of random matrices

N × N unitary matrix related with the Lax matrix of this model

$$p(s)$$
 $p(1, s) = 0$ for $s > a$
 $p(2, s) = 0$ for $s < a$ and $s > 2a$
 $p(3, s) = 0$ for $s < a$ and $s > 3a$

$$a = 4/3$$

$$p(s) = \frac{81}{64}s^2$$
, $0 < s < a$, $p(2, s) = \left(-\frac{3}{2} + \frac{27}{16}s - \frac{81}{512}s^3\right)e^{3s/2}$

2 < a < 3

Tedious calculations and complicated expressions

$$p(s)$$
 $p(1,s) = 0$ for $s > a$
 $p(2,s) = 0$ for $s > a$
 $p(3,s) = 0$ for $s < a$ and $s > 2a$

Fractal dimensions

Fractal dimensions are **not** yet accessible for analytical calculations

Perturbation series = the only analytical way to them

The Ruijsenaars-Schneider ensemble:

$$M_{mn} = e^{i m} \frac{1 - e^{2 i a}}{N (1 - e^{2 i (m-n+a)/N})}$$

Perturbation series are possible around all integer points a = k.

$$a = k +$$

$$M_{mn} = M_{mn}^{(0)} \left(1 + \frac{i(N-1)}{N}\right) + M_{mn}^{(1)} + O(^{2})$$

where

$$M_{mn}^{(0)} = e^{i m}_{n,m+k}$$

$$M_{mn}^{(1)} = e^{i m} (1 - n,m+k) \frac{e^{-i(m-n+k)/N}}{N \sin(m k)}$$

Perturbation series for strong multifractality: $|D_q| = 1$

- a 1 M_{mn}⁽⁰⁾ is diagonal degenerate perturbation series
 - Unperturbed eigenfunctions $j^{(0)}() = j$
 - Unperturbed eigenvalues = eⁱ

The first order = the contributions of 2×2 sub-matrices

$$\left(\begin{array}{ccc} M_{mm} & M_{mn} \\ M_{nm} & M_{nn} \end{array} \right) \qquad \left(\begin{array}{ccc} e^{i & m} & e^{i & m}h \\ -e^{i & n}h & e^{i} & \\ \end{array} \right)$$

Mean moments of eigenfunctions

$$I_{q} = \frac{1}{N (E)} \sum_{j_{s}=1}^{N} |j()|^{2q} (E - E)$$
.

(E) = the total mean eigenvalue density. For RSE: (E) = 1/2

Fractal dimensions

where

$$J(q) = \int_{-}^{} \left[\frac{1}{(1 + e^{2t})^q} + \frac{1}{(1 + e^{-2t})^q} - 1 \right] \cosh(t) dt = -\frac{-\left(q - \frac{1}{2}\right)}{(q - 1)}$$

One gets

$$\sum_{j=1}^{N-1} \frac{1}{N \sin(j/N)} = 2 \ln N + 2(+ \ln 2 - \ln)$$

Finally when N

$$I_q - -2a - \frac{\left(q - \frac{1}{2}\right)}{\left(q - 1\right)} \ln N$$

By definition $I_q - N^{-(q-1)D_q}$

Perturbation series for week multifractality:

$$|1 - D_q|$$
 1

When a = k + and k = 0 the unperturbed matrix

$$M_{mn}^{(0)} = e^{i m}_{n,m+k}$$

is the shift matrix and its eigenfunctions are extended

The case k = 1

Eigenvalues () and eigenfunctions n = n = n = n = n () of $M_{mn}^{(0)}$ are

() =
$$e^{i^{-}+2 i /N}$$
, $\binom{0}{n}$ () = $\frac{1}{N}e^{iS_{n}()}$,

$$S_n() = \frac{2}{N} (n-1) - \sum_{j=1}^{n-1} (_j - \bar{}), = \sum_{j=1}^{N} _j$$

The first order in $\epsilon = a - 1$

$$C = \frac{\sum_{mn} {m \choose m} ()M_{mn}^{(1)} {n \choose n} ()}{() - ()}$$

At the leading order in

$$\left\langle \sum_{n=1}^{N} |n(\cdot)|^{2q} \right\rangle = N^{1-q} \left[1 + \frac{q(q-1)}{2} W(\cdot) \right],$$

W() =
$$\frac{1}{N} \sum_{n=1}^{N} \left\langle \left[\sum e^{iS_n(\cdot) - iS_n(\cdot)} C + c.c. \right]^2 \right\rangle$$
.

Direct (but tedious) calculations show strong cancellations and

W() =
$$^{2}\frac{^{2}}{N^{3}}\sum_{i=1}^{N-1}\sum_{n=1}^{N-1}\frac{\sin^{2}(n/N)}{\sin^{2}(n/N)\sin^{2}(N)}$$
.

When N N

Fractal dimensions for RSE

The remaining sum over n can be transformed into an integral over y and when N

$$W() - 2^{2} \ln N + O(1).$$

Combining all terms together one finds

$$D_q = 1 - q(1 - a)^2$$
.

For k 2 calculations are more tedious but one can prove that

$$D_q = 1 - q \frac{(a - k)^2}{k^2}$$
 when $|a - k| = 1$

For comparison when

Spectral compressibility for RSE

$$= (1 - a)^{2}.$$

$$- 1 - 2a, |a| 1$$

$$\cdot 1 < a < 2$$

$$= \left(\frac{a^2}{4} - \frac{4a(1-a)z^2 + a^2\sinh^2 z}{(2z - \sinh 2z)^2}\sinh^2 z\right) \frac{\sinh^2 z}{z^2}$$

where z is the solution of

$$a = \frac{2z^2 - z \sinh 2z}{z^2 + \sinh^2 z - z \sinh 2z}$$

z is real when 1 < a < 4/3z is imaginary when 4/3 < a < 1For a = 4/3, = 1/9

$$= \frac{1}{a(\sin^2 z + z^2 - z \sin 2z)^2} \Big[(a - 3)^2 (a - 2)z^2 - 6(a - 2)z^2 \sin^2 z \\ - (a - 3)(a - 1)(2a - 5)z^3 \sin 2z + 2(a - 2)(\cos 2z + 2)(a - 1)(a - 2)z^2 \sin^2 z \\ - 2a(a - 2)(2a - 3)z \cos z \sin^3 z + a(a - 1)^2 \sin^4 z \Big]$$

where

$$x = \frac{a \sin^2 z + (a - 2)z^2 + (1 - a)z \sin 2z}{(a - 1)\sin^2 z + (a - 3)z^2 + (2 - a)z \sin 2z}$$

and

$$\frac{e^{x}}{x} = \frac{\sin z}{z} e^{z/\tan z}$$

From exact expressions it follows

$$- \begin{cases} 1 - 2a & |a| & 1 \\ \frac{(a - k)^2}{k^2} & |a - k| & 1 \text{ and } |k| & 1 \end{cases}$$

<u>교</u>

Fractal dimensions for CrBRME and RSE

CrBRME	RSE					
Weak multifractality						
1/b 1	a – k 1					
$D_q = 1 - q \frac{1a - b}{2b}$	$D_q = 1 - q \frac{(a-k)^2}{k^2}$					
$=\frac{1}{2}$ $=\frac{(a-k)^2}{k^2}$						
Strong multifractality						

Strong multifractality				
b 1	a 1			

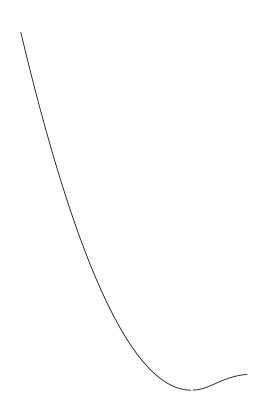
$$D_q = 4bc$$

Conjecture: $\chi = 1 - D_1/d$, (E.B. and Giraud (2010))

Wave function entropy (information dimension):

$$-\sum_{n} |n()|^2 \ln |n()|^2 - D_1 \ln N$$

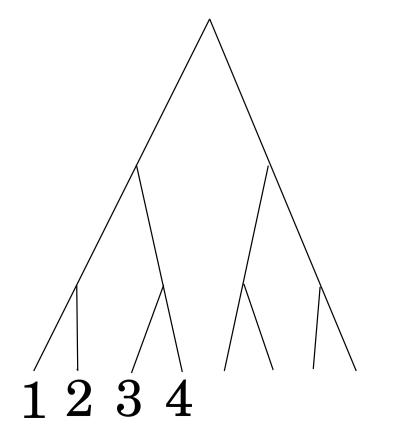
Chalker, Kravtsov, Lerner (1996): $= 1/2 - D_2/2d$



Critical ultrametric matrices

(Fyodorov, Ossipov, Rogriguez (2009))

 $2^K \times 2^K$ Hermitian matrices with independent Gaussian variables with zero mean and $|H_{nn}|^2 = W^2$. $|H_{mn}|^2 = 2^{2-d_{mn}}J^2$, $d_{mn} =$ the ultrametric distance between m and n along the binary tree



	1	1.2	1,2	1.4	1.4	1.4	1.4
1		1.2	1.2	1.4	1.4	1.4	1.4
1.2	1, 2		1	1.4	1.4	1.4	1.4
1.2	1.2	1		1.4	1.4	1.4	1.4
1.4	1.4	1.4	1.4		1	1.2	1.2
1.4	1.4	1.4	1.4	1		1.2	1.2
1.4	1.4	1.4	1.4	1.2	1.2		1
1.4	1.4	1.4	1.4	1.2	1.2	1	

Higher dimensional conjecture: $= 1 - D_1/d$

Standard two-dimensional critical model:

MIT in the quantum Hall e ect via the Chalker-Coddington network model

(Evers et al. (2008))
$$- D_1 = 1.7405 \pm 0.0004$$

Conjecture:
$$_{c} = 1 - D_{1}/2 - _{c} = 0.1298 \pm 0.0002$$

(Klesse, Metzler (1997))
$$- = 0.124 \pm 0.006$$

Standard three dimensional critical model:

MIT in 3-d Anderson model

(Rodriguez et al. (2010))
$$- D_1 = 1.93 \pm 0.01$$

(Rodriguez et al. (2009))
$$- D_0 = 4.027 \pm 0.016$$

Symmetry:
$$D_1 = 2d - D_0 - D_1 = 1.973 \pm 0.016$$

Conjecture:
$$_{c} = 1 - D_{1}/3 - _{c} 0.34...0.36$$

(Ndawana et al. (2002))
$$-$$
 = 0.28 ± 0.06

(Ndawana et al. (2002))
$$- = 0.32 \pm 0.03$$

Summary

•

Compressibility for ultrametric ensemble

By definition: $= 1 + \lim_{L} \lim_{N} F_{L,N}$,

$$F_{L,N} = \frac{1}{-} \int_{-L/-}^{L/-} [R_2(E + s/2, E - s/2) - ^{-2}] ds.$$

Here $R_2(E_1, E_2)$ is the two-point correlation function

$$R_2(E_1, E_2) = \left\langle \sum_{m=n}^{N} (E_1 - m) (E_2 - n) \right\rangle$$

 $\bar{}$ = N (E) is the mean density.

In the first order of perturbation series it is su cient to consider 2 × 2 sub-matrix

$$F_{L,N}$$
 2 $\left\langle \sum_{i=i_0}^{K-1} 2^i \sqrt{\left(\frac{L}{N}^2 - 4\left(\frac{J|z|}{2^i}\right)^2 - 2L\right)} \right\rangle$

with i_0 such that L/(2 N) $J|z|/2^{i_0}$.

$$\sum_{i=i_0}^{K-1} 2^i = 2^K - 2^{i_0} = N - \frac{2J|z|N}{L}$$

Therefore

$$F_{L,N}$$
 2 $\left\langle \sum_{i=i_0}^{K-1} 2^i \left[\sqrt{\left(\frac{L}{N}^2 - 4 \left(\frac{J|z|}{2^i} \right)^2 - \frac{L}{N} \right] - 2J|z| \right\rangle$

Change i to $2J|z|/2^i = L/(x N)$. Then

F(L, N) 4
$$\frac{J}{\ln 2} \langle |z| \left[\int_{1}^{x_{m}} (\sqrt{1-1/x^{2}}-1) dx - 1 \right] \rangle$$

$$=1-\frac{J}{2\ln 2W}$$