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Plan:

� Part I: Nonintersecting Brownian Motions

N nonintersecting Brownian excursions() half-watermelons

Two questions:

(i) joint distribution of the positions at fixed time

(ii) distribution of the maximal height! Exact formula

=) large N asymptotics via YM2

=) 3-rd order phase transition

� Part II: Yang-Mills gauge theory in 2-d

� Summary and Conclusions
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Fibrous Polymers
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Non-intersecting Brownian excursions in 1d

N Brownian excursions in one-dimension
_xi (t) = �i (t) ; h�i (t)�j (t 0)i = �i;j�(t � t 0) ; 0 � t � 1
xi (0) = xi (t = 1) = 0 xi (t) > 0 for 0 < t < 1

Non-intersecting condition

x1(t) < x2(t) < ::: < xN(t)

0 < 8t < 1

half−watermelon

0 1

t

x

wall

watermelon "with a wall"

Katori & Tanemura (2004), Tracy & Widom (2007), ....
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Vicious Walkers in Physics

P. G. de Gennes, Soluble Models for fibrous structures with steric constraints (1968)

D. A. Huse and M. E. Fisher, Commensurate melting, domain walls, and

dislocations (1984); M. E. Fisher, Walks, Walls, Wetting and Melting (1984)

B. Duplantier Statistical Mechanics of Polymer Networks of Any Topology (1989)

J. W. Essam, A. J. Guttmann, Vicious walkers and directed polymer networks in

general dimensions (1995)

H. Spohn, M. Praehofer, P. L. Ferrari et al. Stochastic growth models

(2006)

T. L. Einstein et. al., Fluctuating step edges on vicinal surfaces (2004–)

...

Connection between Vicious Walkers and Random Matrix Theory
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Brownian excursions and Dyck paths

In presence of a hard wall at the origin! half-watermelons

Continuous space-time: Non-intersecting Brownian Excursions

Discrete space-time: Dyck paths (combinatorial objects)

(Cardy, Katori, Tanemura, Krattenthaler, Fulmek, Feierl, Guttmann, Viennot, Tracy-Widom ...)
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Two questions
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Q1: At fixed 0 < � < 1, what is the joint distribution of positions
Pjoint(fxigj�)?

Q2: What is the probability distribution of the global maximal height
Prob:[HN � M;N



Two questions
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Method: Path Integral for free fermions

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
���

Propagator from ~y at � = 0 to ~x at
� = t

G(~x ; ~y ; t) =

Z ~x

~y
D~x(�) exp

"
�1

2

Z t

0

X
i

_x2
i (�)d�

#
1x1(�)<x2(�)<���<xN (�)

= h~x je�Ĥt j~yi; where Ĥ � � 1
2

P
i @

2
xi

=
X

E

 E (~x) E (~y) e�E t

 E (~x) � det [�ni (xj )]! Slater determinant (N � N)

Alternative methods:
� Lindstrom-Gessel-Viennot method (discrete lattice paths)

� Karlin-Mcgregor formula (continuous paths)
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Method: Path Integral for free fermions
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Q1: Joint distribution!Wishart eigenvalues

0 1τ

t

x

At fixed time 0 < � < 1, let
fx1; x2; : : : ; xNg ! positions of walkers

Pjoint(fxigj�) /
NY

i=1

x2
i

Y
j<k

(x2
j � x2

k )2 exp

"
� 1

2�(1� �)

X
i

x2
i

#

(Schehr, S.M., Comtet, Randon-Furling, PRL, 101, 150601 (2008))

� x2
i =�i ! eigenvalues of the Wishart matrix W

W = X yX where X ! Gaussian random matrix (GUE)
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Top curve at fixed time: Tracy-Widom (GUE)

0 1τ

t

x

topmost curve at fixed time � : x2
N(�)!

largest eigenvalue of Wishart matrices

� largest eigenvalue of the Wishart GUE matrix (properly scaled for
large N) is distributed via the Tracy-Widom GUE law (Johansson 2000,

Johnstone, 2001)

� This shows that the top position xN(�) typically fluctuates for large
N as

xN (�)p
2�(1��)

= 2
p

N + 2�2=3 N�1=6 �2

where Pr[�2 � �] = F2(�)! Tracy-Widom (GUE)
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0 1τ
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Q2: Maximal height of a watermelon with a wall

HN ! random variable
Q: What is its distribution
Prob[HN � M;N] =FN



Q2: Maximal height of a watermelon with a wall

HN ! random variable
Q: What is its distribution
Prob[HN � M;N] =FN(M) ?

N = 1: F1(M) =
p

2�5=2

M3

P1
k=1 k2 e��

2 k2=2 M2
(Chung ’75, Kennedy ’76)

N = 2, F2(M)! complicated (Katori et. al., 2008)
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Q2: Maximal height of a watermelon with a wall

HN ! random variable
Q: What is its distribution
Prob[HN � M;N] =FN(M) ?

N = 1: F1(M) =
p

2�5=2

M3

P1
k=1 k2 e��

2 k2=2 M2
(Chung ’75, Kennedy ’76)

N = 20



Exact result for all N via Fermionic path integral

FN(M) = Proba[xN(�) � M; 8� 2 [0;1]]

FN(M) =
RM(1)

R1(1)

RM(1) � proba. that N walkers
return to their initial positions at
� = 1

� RM(1) = h~�je�Ĥ j~�i = =
X

E

j E (~�)j2 e�E

� Ĥ �Pi

�
� 1

2@
2
xi

+ V (xi )
�

� potential V (x) = 0 for 0 < x < M
=1 for x = 0; M (Absorbing b.c.)

�  E (~�) � det [sin (ni��j=M)]! Slater determinant (N � N)

� Energy E = �2

2M2

�
n2

1 + n2
2 + : : :+ n2

N

�
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Exact result for all N via Fermionic path integral

Using Fermionic path-integral techniques we derived the full Prob.
Dist. of HN for all N exactly

Cumul. distr: FN(M) = Prob[HN � M]

FN(M) =
BN

M2N2+N

X
ni =1;2:::

NY
i=1

n2
i

Y
j<

jM6800Tf 6.22367 6. 9.9626 Tf 86.501 1-o3.22367 678(the)-278(full)-278(Prob)40(.)]TJ 0 -11.955 Td [(Dist.)-344(of)]TJ/F47 9.9626 Tf 34.431 0 Td [(H)]TJ/F47 6.9738 Tf 7.193 -1.537 Td [(N)]TJ/F44 9.9626 Tf 8.843 1.537 Td [(f)30(or)]TJ4 0 G
0 g 0 G
0 g 0 G
q
1 0 0 ec.J/F47 9.9626 Tf 34.431 0 Td [(H)]TJ/F47 6.9735 Tf 7.193 -1.6 Tf 86.501 1-o3.22367686 Tf 8.843 1.5351 0 G
q
1 0 0 ec.J/F -11.9626 Tf 34.431 0 Td 48(=)]TJ/F472
698 T626 Tf 34.4218.78p Td [(=)]TJ/F44 6.9734 0 G1.53193 -1."37 Td [(N)]TJ/F44 95.812 Td1.53193 -1.537 Td [(f1=)]TJ/F44 6.9 Tf48 86.501 162� 0 G
q
1 0 0 ec.J/F9733 2.6615f 34.431 0 d [(2)]TJ/F47 275.826 Tf 3.878 0 Td [(N)]TJ/F44 4.9813 Tf8.00002.993 Td [(2)]626 Tf 6.073 75.826 T63f 04f 34.431 0 Td [()]TJ/F44 95.5bN 12

j<
N N N N �F4orM

B

Xni







Exact result for all N via Fermionic path integral

Using Fermionic path-integral techniques we derived the full Prob.
Dist. of HN for all N exactly

Cumul. distr: FN(M) = Prob[HN � M]

FN(M) =
BN

M2N2+N

X
nNp075073 1.53Ji [(N)]Tf sRG
/2al3374 4

X

Xp075073 1..4T4.113(M)]TJ/F44 6.9738 Tf 9.106-6 c64 -.6676





Asymptotic large N results:

� where F1(x)! Tracy-Widom GOE

� ��(x)! left and right rate functions =) explicitly computable
(Schehr, S.M., Comtet, Forrester, 2011/2012)

Right rate function:

�+(x) = 4 x
p

x2 � 1� 2 ln
h
2x
�p

x2 � 1 + x
�
� 1
i

Left rate function:

��(x)! can be expressed in terms of elliptic functions

� In particular,

�+(x) ’ 29=2

3
(x � 1)3=2 as x ! 1+

��(x) ’ 16
3

(1� x)3 as x ! 1�1
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3-rd order phase transition

lim
N!1

� 1
N2 ln FN

�
M =

p
2N x

�
=

(
��(x) ; x < 1
0 ;



3-rd order phase transition

lim
N!1

� 1
N2 ln FN

�
M =

p
2N x

�
=

(
��(x) ; x < 1
0 ; x > 1 :

Since, ��(x) � (1� x)3 ) 3-rd order phase transition

=) similar to the Douglas-Kazakov transition in large-N 2-d
gauge theory
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3-rd order phase transition

lim
N!1

� 1
N2 ln FN

�
M =

p
2N x

�
=

(
��(x) ; x < 1
0 ; x > 1 :
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Partition function of Yang-Mills theory in 2d

� Consider a 2-d manifoldM. At each point x : a pair of N � N matrix

A�(x) (� = 1;2)! gauge field

Partition function: ZM =
R

[DA�]e�
1

4�2

R
Tr[F�� F�� ]d2x

F�� = @�A� � @�A� + i[A�;A� ]! field strength

�! coupling strength

� Under a local gauge transformation:

A� ! S�1(x)A�S(x)



Partition function of Yang-Mills theory in 2d

� Consider a 2-d manifoldM. At each point x : a pair of N � N matrix

A�(x) (� = 1;2)! gauge field

Partition function: ZM =
R

[DA�]e�
1

4�2

R
Tr[F�� F�� ]d2x

F�� = @�A� � @�A� + i[A�;A� ]! field strength

�! coupling strength

� Under a local gauge transformation:

A� ! S�1(x)A�S(x)� i S�1(x)@�S(x)

where S(x)! N � N matrix that depends on the underlying gauge
group G

Field strengths transform as F�� ! S�1(x)F��(x)S(x) that keeps the
action gauge invariant.

Ex: G � U(1) : electrodynamics
G � SU(2) : electro-weak interacto

G � SU(3) : chromodynamics
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Lattice Regularization:

Consider, for instance, the U(N) gauge theory

Regularization on the lattice:

ZM =

Z Y
L

dUL

Y
plaquettes

ZP [UP ]

UP =
Y

L2 plaquette

UL

ZP ! plaquette partition function

(Wilson, ’74, Migdal, ’75)
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Heat-kernel action

ZM =

Z Y
L

dUL

Y
plaquettes

ZP [UP ]

UP =
Y

L2plaquette

UL

A common choice : Wilson’s action Wilson’74

ZP(UP) = exp
h
b N Tr(UP + UyP)

i
Exact solution of the Partition Function: (Gross & Witten, Wadia, ’80)

Alternative choice : invariance under decimation) Migdal’s recursion
relationZ

dU3 ZP1 (U1U2U3)ZP2 (U4U5Uy3 ) = ZP1+P2 (U1U2U4U5)

ZP(UP) =
X

R

dR�R(UP) exp
�
� AP

2N
C2(R)

�
Migdal’75, Rusakov’90
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Heat-kernel action

ZM =

Z Y
L

dUL

Y
plaquettes

ZP [UP ]
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X

R
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�
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2N
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Partition function of Yang-Mills theory on the
2d-sphere

Partition functo on the sphere computed with the heat-kernel action

ZM =
X

R

d2
R exp

�
� A

2N
C2(R)

�

Irreducible representations R of G are labelled by the lengths of the
Young diagrams:

� If G = U(N)

ZM = cN e�A N2�1
24

1X
n1;:::;nN =0

Y
i<j

(ni � nj)
2e�

A
2N

PN
j=1 n2

j

� If G = Sp(2N)

ZM = ĉN eA (N+ 1
2 ) N+1

12

1X
n1;:::;nN =0

0@ NY
j=1

n2
j

1AY
i<j

(n2
i � n2

j )2e�
A

4N
PN

j=11









Large N limit of YM2 and consequences for FN(M)

Weak-strong coupling transition (3-rd order) in YM2, Douglas-Kazakov ’93

Critical point A = Ac = �2 corresponds (using A = 2�2N
M2 ):

M = Mc =
p

2N

A > Ac (Strong Coupling) ! M < Mc =
p

2N (left tail of HN )

A < Ac (Weak Coupling) ! M > Mc =
p

2N (right tail of HN )
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Large N limit of YM2 and consequences for FN(M)

In the critical regime, "double-scaling limit", the method of orthogonal
polynomials (Gross-Matytsin ’94, Crescimanno-Naculich-Schnitzer ’96) shows

d2

dt2 log FN

�p
2N(1 + t=(27=3N2=3))

�
= �1

2

�
q2(t)� q0(t)

�
q00(t) = 2q3(t) + t q(t) ; q(t) � Ai(t) ; t !1

FN(M) ! F1

�
211=6N1=6

���M �p2N
����

F1(t) = exp
�
� 1

2

Z 1
t

�
(s � t) q2(s) + q(s)

�
ds
�

� Tracy-Widom distribution for � = 1

double scaling regime [A � Ac ] ! Tracy-Widom [M �
p



Absorbing boundary condition! SP(2N)

Ratio of reunion probabilities for



Periodic boundary condition! U(N)

Ratio of reunion probabilities for N vicious walkers on the segment
[0;M] with periodic boundary conditions

FN(M) = Proba[xN(�) � M; 8� 2 [0; 1]]

FN(M) =
RM(1)

R1(1)

RM(1) � proba. that N walkers
return to their initial positions at
� = 1

Related to YM2 on the sphere with gauge group U(N)

FN(M) / Z
�

A =
4





Summary

�
�
�
�

��
��
��
����

����

��

xi (�)! trajectory of the i-th walker
xN(�)! trajectory of the top path
xN(�) (centered and scaled)
! Airy2 process minus a parabola

Prähofer & Spohn, ’00

� At fixed time � , the marginal xN(�) (centered and scaled)
! Tracy-Widom � = 2

� However, the maximal height HN = max0���1� �
t 0 0 rg model [(�)]TJ/F44 6.912305 0.9626 Tf 12.7[(H12e)]TJ
1 0 90 G5(er)50(,Johanssong 1 0 cale0 R356 -11.955592e)]TJ
1 0 f 34.175 f 3.439 18.261 -2.655 Td [0 rg 3(acy-Wid82F44 03 l G
1 0.9 0[(H12e)]TJ
1 0 0.00 14.908)-278(a)-278(p[(�)]TJ/F44 6.90.0350.9626 Tf 12.7[(H12e)]TJ
1 0 90 G5(er)50(,b
/F4 rg 1 0Morenorg 1 0Flores278(1 0.9 0Quastel1 0.9 0Remenik:)-hn,([( 02716J4)] 954 Tf4 1 0 0 RG
/F59vicio]TJ
0 0 1 0 0 RG
/F47 9rg 0 0rob
/F4lem9rg 0 using 0.9 0Riemann-Hilb7 9r40(t:)-hn,(Liechty0 0g 1 0.9 0cale0 12 Tf 6.644 9 0.9 RG
/F14 9.9626 Tf -180.678 -19.621 Td [(�)]T30
/F Tf 7 G
4F44 9.9626 Tf 7.751 0 Td [(Ho)15(w)10(e)30(v)25(er)50(,beautiful 0.9 0conn)]Tiong 1 0 to9.9626 T9.9626 Tf -180.678 -19.62H)]TJ/F47 6.9702.450.9626 TfYM.538 Td [(0)]TJ/F13 0 r441 0 0 RG
 [-22 Tf 7.751 0 Td [(Ho)15(w)10(e)30(vmin)0 0 RG
 [-20 rg 1 0 .9 RG
 [-278(maximal)]TJ
0.9 g 0.9 G
 [-23ht)]TJ
0.9 0.9 1 rg(-rrg 1 0 ord7 9rg 0 0haseg 1 0 . 0 0 rnsiTiong9 0.9 rg 1 0.9 0.9 RG
/F0 G
0 g 0 G
0 g 0 G
q
1 0 0 1 -340.075 255.247 c TfsM4)]TJ81.41)]TJ60 0 G
0 g 0 G
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Summary
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xi (�)! trajectory of the i-th walker
xN(�)! trajectory of the top path
xN(�) (centered and scaled)
! Airy2 process minus a parabola

Prähofer & Spohn, ’00

� At fixed time � , the marginal xN(�) (centered and scaled)
! Tracy-Widom � = 2

� However, the maximal height HN = max0���1[xN(�)] (centered
and scaled)

! Tracy-Widom � = 1
an indirect proof via PNG growth model! Johansson (2003)

Airy2 process! by Moreno Flores, Quastel, Remenik: 1106.2716

vicious walker problem using Riemann-Hilbert: Liechty, (2012)

� beautiful connection to YM2 and the 3-rd order phase transition
Satya N. Majumdar Vicious Walkers, Random Matrices and 2-d Yang-Mills theory



Open Questions and related issues:

� boundary conditions() gauge groups
deeper understanding needed

� Other interesting observables:

� Joint distribution of the maximal height HN = max0���1[xN(�)] and
the time �M at which it occurs: PN(HN = M; �M)

=) Interesting relation to KPZ interfaces and (1 + 1)-d
directed polymers

Rambeau & Schehr ’11, Flores et. al. ’12, Schehr ’12, Quastel & Remenik, ’12,

Baik, Liechty, Schehr, ’12

� distribution of the maximal height H1(N) = max0���1[x1(�)]! of
the first (lowest) walker ?
...
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Consequences for curved stochastic growth

Distribution of the height field h(0; t) (Prähofer & Spohn,

’00)

lim
t!1

P
�

h(0; t)� 2t
t1=3 � s

�
= F2(s)

F2(s) � Tracy�Widom distribution for � = 2

Satya N. Majumdar Vicious Walkers, Random Matrices and 2-d Yang-Mills theory








