Motivation and Background Motivation Introduction to CDT

- Causal Dynamical Triangulations (CDT) is a non-perturbative approach to quantum gravity
- CDT respects the Lorentzian nature of the path integral by disallowing *acausal* configurations in the sum over geometries
- Recent numerical simulations give evidence for interesting results in higher dimensions (emergence of de Sitter space-time, scale dependent spectral dimension)
- It is vital to extend the analytical techniques in two-dimensions by means of matrix model formulations

Notivation and Background

Quantum Gravity via DT and CDT

Dynamical Triangulations (DT)^a and Causal Dynamical Triangulations (CDT)^b are non-perturbative approaches to define the gravitational path integral as a sum over geometries. Schematically,

$$\hat{Z} = \begin{bmatrix} Z \\ d \\ exp \end{bmatrix} \hat{S} \begin{bmatrix} Z \\ exp \end{bmatrix} \hat{Z} = \begin{bmatrix} X \\ exp \end{bmatrix} \hat{S} \begin{bmatrix} Z \\ ex$$

Once Z is calculated, one takes the continuum limit:

^asee Ambjørn, Durhuus, Jonsson, *Quantum Geometry*, Cambridge ^bintroduzed by Ambjørn and Loll, hep-th/9805198 Nucl.Phys. B

Stefan Zohrer

Matrix Models in CDT

Quantum Gravity via DT and CDT

Dynamical Triangulations (DT)^a and Causal Dynamical Triangulations (CDT)^b are non-perturbative approaches to define the gravitational path integral as a sum over geometries. Schematically,

$$\hat{Z} = \begin{bmatrix} Z \\ Z \\ Z \end{bmatrix} d \exp \hat{S} = \begin{bmatrix} X \\ Z \\ Z \end{bmatrix} exp S \begin{bmatrix} X \\ Z \\ Z \end{bmatrix} exp S$$

Once Z is calculated, one takes the continuum limit:

^asee Ambjørn, Durhuus, Jonsson, *Quantum Geometry*, Cambridge ^bintroduzed by Ambjørn and Loll, hep-th/9805198 Nucl.Phys. B

Stefan Zohren

Matrix Models in CDT

Random Matrix Models for CDT

Generalised CDT: Disc Function

Matrix Model Correspondence

The results of generalised CDT can be obtained from the following N = N Hermitian matrix model^a

$$Z(;g_{s}) = \begin{array}{c} Z \\ d \\ e \\ \frac{N}{g_{s}} Tr V(;); \\ V(;) = \\ \frac{1}{3} \\ 3 \end{array}$$

The disc function is then given by the standard resolvent

$$\frac{1}{N}$$
 Tr $\frac{1}{X}$ = $W_{g_s}(X) + O(N^{-2})$

Note that this represents a matrix model for *continuum surfaces* similar to the Kontsevich model.^b

^aAmbjørn, Loll, Watabiki, Westra, SZ, 0804.0252 Phys. Lett. B ^bKontsevich, Funk. Anal. 25 (1991) 50

Stefan Zohrer

String Field Theory

String Field Theory

One can go beyond the tree diagrams by introducing a formalism of second quantisation, i.e. a string field theory (SFT)^{ab}

One has a propagation, splitting, joining and tadpole term. The corresponding DS-equations give the "tree-diagrams" for = 0 and match to the matrix model loop equations for $= 1 = N^2$.

^aAmbjørn, Loll, Watabiki, Westra, SZ, 0802.0719 JHEP ^bfor previous work in DT see Kawai et al. hep-th/9406207 Phys. Rev. D

String Field Theory: Some Details

The detailed Hamiltonian reads

$$\hat{H} = \frac{Z}{\frac{dL}{L_Z}} \frac{g(L)}{Z} \left(L_{\frac{e^2}{eL^2}} + L \right) (L);$$

$$g_s \quad dL_1 \quad dL_2 \quad g(L_1) \quad g(L_2)$$

Matrix models for DT: Counting planar maps

The dual fat-graphs of maps are counted by matrix models of N = NHermitian matrices

$$Z(ft_ng) = \begin{bmatrix} Z \\ 0 \end{bmatrix} e^{-NTrV(0)}; \quad V(0) = \frac{1}{2} e^{-2} + \frac{1}{2} \frac{t_n}{n} e^{-n};$$

The propagator in the potential represents double lines in the fat-graph Terms of order t_n ⁿ correspond to vertices of order *n* in the fat-graph *N* ! 1 corresponds to the planar limit

Combinatorial Interpretation of Loop Equations

In the planar limit one obtains the following loop equations for the resolvent for a matrix model with potential V() = 2 =2 g 3 =3:

$$w(z) = zgw(z) + \frac{1}{z}Q(z;g) + \frac{1}{z}w^{2}(z); \quad w(z) = -\frac{1}{N} \operatorname{Tr} - \frac{1}{z}$$

Their combinatorial interpretation is given through Tutte's equation, pictorially

Matrix Model for discrete CDT and continuum limit

The loop equations for discrete CDT correspond to a *N N* Hermitian matrix model

$$Z(g;) = \begin{bmatrix} Z \\ [d]] e \end{bmatrix} e^{M \operatorname{Tr} V()}; \quad V() = g + \frac{1}{2}^{2}$$

Matrix Model for discrete CDT and continuum limit

CDT as new continuum limit

One can understand the new continuum limit $^{\rm a}$ in terms of the eigenvalue distribution

$$Z(g;) = \frac{Z_{1} \vee V_{1}}{\int_{i=1}^{1} \int_{j \in i}^{j \in i}} d_{i} (j_{j})^{2} \exp \left(-\frac{N}{2} \vee V_{1} \right)^{2} (j_{i};g)$$

CDT as new continuum limit

One can understand the new continuum limit $^{\rm a}$ in terms of the eigenvalue distribution

$$Z(g;) = \frac{Z_{1} \times W}{\prod_{i=1}^{7} j \in i} d_{i} (j_{i})^{2} \exp \left(\frac{N}{\prod_{i=1}^{N} V(j; g)^{2} y_{3} 62 \text{ O Td}}{\prod_{i=1}^{7} j \in i}\right)$$

1

Application: Multi-Critical Points and Mater Coupling

One can investigate the m = 3 multi-critical point of a higher order potential with ^a

$$V^{\emptyset}(ft_{n;cr}g) = V^{\emptyset\emptyset}(ft_{n;cr}g) = V^{\emptyset\emptyset}(ft_{n;cr}g) = 0$$

It can be seen that this model corresponds to the scaling limit of hard dimers, a (2,5)-CFT, coupled to CDT $^{\rm b}$

One can generalise this to the *m*-th multi-critical point which corresponds to a $(2;2m \quad 1)$ -CFT coupled to CDT ^c

^aAmbjørn et al. 1202.4435 Phys. Lett. B ^bAtkin, SZ: 1202.4322 Phys. Lett. B ^cAtkin, SZ: 1203.5034 JHEP

Stefan Zohrer

Application: Sum over Topologies

Summary and Final Considerations

We gave an overview of recent developments for matrix model techniques in CDT.

Interestingly, the continuum surface model of generalised CDT is again described by a matrix model.

We gave a combinatorial interpretation of the loop equations of the discretized model.

We discussed several application of these techniques to describe higher multi-critical points as well as the sum over topologies.

Interesting models such as the Ising model coupled to CDT still remain unsolved.

Summary and Final Considerations

We gave an overview of recent developments for matrix model techniques in CDT.

Interestingly, the continuum surface model of generalised CDT is again described by a matrix model.

We gave a combinatorial interpretation of the loop equations of the discretized model.

We discussed several application of these techniques to describe higher multi-critical points as well as the sum over topologies.

Interesting models such as the Ising model coupled to CDT still remain unsolved.

Thank you very much!