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Motivation and Background Motivation

Motivation

� Causal Dynamical Triangulations (CDT) is a non-perturbative approach
to quantum gravity

� CDT respects the Lorentzian nature of the path integral by disallowing
acausal configurations in the sum over geometries

� Recent numerical simulations give evidence for interesting results in
higher dimensions (emergence of de Sitter space-time, scale dependent
spectral dimension)

� It is vital to extend the analytical techniques in two-dimensions by
means of matrix model formulations

Stefan Zohren Matrix Models in CDT 3 / 19





Motivation and Background Introduction to CDT

Quantum Gravity via DT and CDT

Dynamical Triangulations (DT)a and Causal Dynamical Triangulations
(CDT)b are non-perturbative approaches to define the gravitational path
integral as a sum over geometries. Schematically,

Ẑ =

Z
2M

d� exp
�
�Ŝ

� ��
! Z =

X
2T

exp
�
�S

� ��

Once Z is calculated, one takes the continuum limit:

�!
N!1

asee Ambjørn, Durhuus, Jonsson, Quantum Geometry, Cambridge
bintroduzed by Ambjørn and Loll, hep-th/9805198 Nucl.Phys. B
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Generalised CDT: Disc Function
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Matrix Model Correspondence

The results of generalised CDT can be obtained from the following N � N
Hermitian matrix modela

Z (�; gs) =

Z
d� e�

N
gs

TrV (�)
; V (�) = ��� 1

3
�3

The disc function is then given by the standard resolvent�
1
N

Tr
�

1
X � �

��
= W�;gs (X ) + O(N�2)

Note that this represents a matrix model for continuum surfaces similar to
the Kontsevich model.b

aAmbjørn, Loll, Watabiki, Westra, SZ, 0804.0252 Phys. Lett. B
bKontsevich, Funk. Anal. 25 (1991) 50
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String Field Theory

One can go beyond the tree diagrams by introducing a formalism of second
quantisation, i.e. a string field theory (SFT)ab

(a) (b) (c) (d)

Ĥ0

L

L

L1 + L2

L1 L2

gs

L1 + L2

L1 L2

�

� One has a propagation, splitting, joining and tadpole term.
� The corresponding DS-equations give the “tree-diagrams” for � = 0 and
match to the matrix model loop equations for � = 1=N2.

aAmbjørn, Loll, Watabiki, Westra, SZ, 0802.0719 JHEP
bfor previous work in DT see Kawai et al. hep-th/9406207 Phys. Rev. D
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String Field Theory: Some Details

The detailed Hamiltonian reads

Ĥ =

Z
dL
L

	y(L)(�L
@2

@L2
+ �L)	(L);

�gs

Z
dL1

Z
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Matrix models for DT: Counting planar maps

The dual fat-graphs of maps are counted by matrix models of N � N
Hermitian matrices

Z (ftng) =

Z
[d�]e�NTrV (�); V (�) =

1
2
�2 �

X
n�3

tn

n
�n:

� The propagator in the potential represents
double lines in the fat-graph

� Terms of order tn�
n correspond to

vertices of order n in the fat-graph
� N !1 corresponds to the
planar limit
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Combinatorial Interpretation of Loop Equations

In the planar limit one obtains the following loop equations for the
resolvent for a matrix model with potential V (�) = �2=2� g�3=3:

w(z) = zgw(z) +
1
z

Q(z ; g) +
1
z

w2(z); w(z) =

�
1
N

Tr
�

1
z � �

��
Their combinatorial interpretation is given through Tutte’s equation,
pictorially

Stefan Zohren Matrix Models in CDT 13 / 19





Random Matrix Models for CDT Matrix Models for Discrete CDT and Combinatorics

Matrix Model for discrete CDT and continuum limit

The loop equations for discrete CDT correspond to a N � N Hermitian
matrix model

Z (g ; �) =

Z
[d�]e�

N
�

TrV (�)
; V (�) = �g
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Matrix Model for discrete CDT and continuum limit
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CDT as new continuum limit

One can understand the new continuum limita in terms of the eigenvalue
distribution

Z (g ; �) =

Z 1
�1

NY
i=1

d�i
Y
j 6=i

(�j � �i )
2 exp

(
�N
�

NX
i=1

V (�i ; g)

)

� At the critical point1 10.90d [(One)-331(can)-331(1.363 ef 4.848 0 Td [(g)]TJ0ribution)]TJ/FV 2.986 0 Td [(6)]TJ]TJ/70 g 0 G
/F170f 6.601 0 Td [())2.79531(terms)-33191 Tf 4.243 0 Td [(–)]TJ/F39 7.9701 Tf 6.363 -1.682 Td [(j)]TJ/F14 3(the)-3cf 4.243 0 Td [(–)]T92 14 3(the)-3Tf 4.848 0 Td [(g)]TJ/F16 10.9091 Tf 6.60 -1.682 Td [(5.1)]F14 3(the)-3cf 4.241 0 Td [())]T919 14 3(the)-38 10.9091 Tf 18.738 14.849 Td [(Z)]TJ/06
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CDT as new continuum limit

One can understand the new continuum limita in terms of the eigenvalue
distribution

Z (g ; �) =

Z 1
�1

NY
i=1

d�i
Y
j 6=i

(�j � �i )
2 exp

(
�N
�

NX
i=1

V (�i ; g)2y362 0 Td [(�)
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Application: Multi-Critical Points and Mater Coupling

� One can investigate the m = 3 multi-critical point of a higher order
potential with a

V 0(ftn;crg) = V 00(ftn;crg) = V 000(ftn;crg) = 0

� It can be seen that this model corresponds to the scaling limit of hard
dimers, a (2,5)-CFT, coupled to CDT b

� One can generalise this to the m-th multi-critical point which
corresponds to a (2; 2m � 1)-CFT coupled to CDT c

aAmbjørn et al.1202.4435 Phys. Lett. B
bAtkin, SZ: 1202.4322 Phys. Lett. B
cAtkin, SZ: 1203.5034 JHEP
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Summary and Final Considerations

� We gave an overview of recent developments for matrix model
techniques in CDT.

� Interestingly, the continuum surface model of generalised CDT is again
described by a matrix model.

� We gave a combinatorial interpretation of the loop equations of the
discretized model.

� We discussed several application of these techniques to describe higher
multi-critical points as well as the sum over topologies.

� Interesting models such as the Ising model coupled to CDT still remain
unsolved.

Thank you very much!
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