Random Fermionic Systems

Fabio Cunden Anna Maltsev Francesco Mezzadri

University of Bristol

December 9, 2016

Maltsev (University of Bristol) [Random Fermionic Systems](#page-48-0)

- First introduced to study magnetic properties of matter
- Toy model for quantum information { study of entanglement
- Random matrix aspect

Background

- First introduced to study magnetic properties of matter
- Toy model for quantum information { study of entanglement
- Random matrix aspect
- Three papers that inspired this work:
	- Lieb-Schultz-Mattis \Two soluble models of an Antiferromagnetic chain"
	- Doctoral thesis of Huw Wells supervised by Jon K4.976 cm 1d bychain"

Our object of study: the Hamiltonian

Self-adjoint operator acting on \mathbb{C}^{2^n}

 \bullet

$$
H = \frac{1}{2} \frac{\lambda^n}{i_j j = 1} A_{ij} (c_i{}^y c_j - c_i c_j{}^y) + B_{ij} (c_i c_j - c_i{}^y c_j{}^y)
$$

Our object of study: the Hamiltonian

Self-adjoint operator acting on \mathbb{C}^{2^n}

$$
H = \frac{1}{2} \frac{\times^n}{i_j j = 1} A_{ij} (c_i{}^y c_j - c_i c_j{}^y) + B_{ij} (c_i c_j - c_i{}^y c_j{}^y)
$$

with $A_{ij} = A_{ji}$; $B_{ij} = B_{ij}$; i.e. $A = A^t$ and $B = B^t$.

 c_j 's are fermionic i.e. fc_i ; $c_jg = 0$; fc_i ; $c_jyg = y$;

We take A_{ij} ; B_{ij} iid real. Our conclusions:

- Ground state energy gap $O(1=n)$ with explicit formula if Gaussian entries
- \bullet DOS { Gaussian universally, also for A , B band
- No repulsion { numerics

 \bullet

Universality

- Gaussian DOS vastly universal
- Subset sums: given a set f_{\Box} ; :::; $_{n}g$ and S_{j} fl; :::; ng, eigenvalues of H are closely related to $k2S_j$ $k \cdot$
- A lot of information
	- Gaussian DOS
	- Groundstate energy gap

Universality

- Gaussian DOS vastly universal
- Subset sums: given a set f_{\square} ; :::; $_{n}g$ and S_{j} f_{1} ; :::; ng, eigenvalues of H are closely related to $k2S_j$ $k \cdot$
- A lot of information
	- Gaussian DOS
	- Groundstate energy gap
- Relation to sums of weighted binomial random variables { can take Fourier transform explicitly!

Fermionic systems: how they arise?

n sites with spins that are linear combinations of λ and λ (no λ) • nearest neighbor interaction { the XY model

Fermionic systems: how they arise?

- *n* sites with spins that are linear combinations of λ and λ (no λ)
- nearest neighbor interaction { the XY model
- the corresponding Hamiltonian is

$$
\begin{array}{ccccc}\n\bigtimes & \bigtimes & & a & b \\
\mathsf{k}:a:b & \mathsf{k} & \mathsf{k}+1 \\
\mathsf{k}=1 & a2f\mathsf{x}:yg\mathsf{b}2f\mathsf{x}:yg\n\end{array}
$$

Here $j^{(a)} = I_2$ $(j-1)$ $\begin{pmatrix} 1 & 1 \ 2 & 1 \end{pmatrix}$ (a) $\begin{pmatrix} 1 & j \ 2 & 1 \end{pmatrix}$ 2

[Background](#page-12-0)

Jordan-Wigner transformation

- Maps a spin chain to a quadratic form in fermionic operators: allows for an exact solution
- In reverse: model a system of interacting fermions on a quantum computer

Jordan-Wigner details

- Raising and lowering operators $a_i^y = x_i + i_j^y$ \sum_{i}^{y} and $a_i = \sum_{i}^{x} i \sum_{i}^{y}$ i
- Can recover Pauli spin operators by $j = (a_j^y + a_j) = 2$,

$$
j = (a_j^y \quad a_j) = 2, \quad j = (a_j^y a_j \quad 1 = 2)
$$

Jordan-Wigner details

- Raising and lowering operators $a_i^y = x_i + i_j^y$ \sum_{i}^{y} and $a_i = \sum_{i}^{x} i \sum_{i}^{y}$ i
- Can recover Pauli spin operators by $j = (a_j^y + a_j) = 2$,

$$
j = (a_j^y \t a_j) = 2, \t j = (a_j^y a_j \t 1 = 2)
$$

• Not fermionic

Jordan-Wigner details

- Raising and lowering operators $a_i^y = x_i + i_j^y$ \sum_{i}^{y} and $a_i = \sum_{i}^{x} i \sum_{i}^{y}$ i
- Can recover Pauli spin operators by $j = (a_j^y + a_j) = 2$,

$$
y' = (a_j^y \t a_j)=2, \t j = (a_j^y a_j \t 1=2)
$$

- Not fermionic
	- Partly fermionic: $f a_j / a_j^y g = 1 / a_j^2 = (a_j^y)^2 = 0$
	- Partly bosonic: $[a_j^y : a_k^y] = [a_j^y : a_k^y] = [a_j : a_k] = 0$

• For fermionic let

$$
c_j = \exp \begin{array}{ccc} & i & 1 \\ i & a_k^y a_k & a_j \\ & k = 1 & 1 \\ c_j^y = a_j^y \exp \begin{array}{ccc} & i & a_k^y a_k \\ & i & a_k^y a_k \\ & k = 1 \end{array} \end{array}
$$

 c_j 's and c_j^y j^{\vee} 's are fermionic: fc_j ; c_k^{\vee} $\iota_k^y g = \iota_{kj}$; $f c_j$; $c_k g = f c_j^y$ j^y ; c_k^y $\int k$ g = 0

Lieb-Schultz-Mattis Antiferromagnetic Chain '61

•
$$
H = \bigcap_{j=1}^{p} (1 + 1) \bigcup_{j=1}^{x} \bigcup_{j=1}^{x} (1 - 1) \bigcup_{j=1}^{y} \bigcup_{j=1}^{y} \bigcup_{j=1}^{y} \bigcap_{j=1}^{y} \bigcap_{j=1}^{y}
$$

• Hamiltonian is a quadratic form in Fermi operators and can be explicitly diagonialized

Lieb-Schultz-Mattis

and A, B can be explicitly diagonalized.

In the '61 paper,

- Complete set of eigenstates
- General expression for the order between any two spins involving a Green's function
- Short, intermediate, and long range order for various situations

Bipartite Entanglement

Setup: XY and XX models with a constant transversal magnetic eld Study: Entropy E_n of entanglement between subsystems

- Vidal et al. computed E_p numerically
- Jin and Korepin compute E_p for XX model using the Fisher-Hartwig conjecture, which gives the leading order asymptotics of determinants of certain Toeplitz matrices
- Keating and Mezzadri study asymptotics of entanglement of formation of ground state using RMT methods

Wells PhD thesis

Hamiltonians of the form

$$
H_n = \frac{1}{p} \sum_{j=1}^{N} \sum_{a=1}^{N} \sum_{b=1}^{N} a_i b_j j_j^{(a)}(b) \tag{1}
$$

for any $a:b:j \n\geq R$ random Gaussian (some universality possible)

Wells PhD thesis

Hamiltonians of the form

$$
H_n = \frac{1}{p} \sum_{j=1}^{N} \sum_{a=1}^{N} \sum_{b=1}^{N} a_i b_j j \sum_{j=1}^{(a)} (b) (1)
$$

for any $a_i b_i j \nightharpoonup R$ random Gaussian (some universality possible) Remarks:

Wells Numerics in the XY case

For a Hamiltonian of the form

$$
H_n = \frac{1}{p} \sum_{j=1}^{N} \sum_{a=1}^{N} \sum_{b=1}^{N} a_i b_j j_j^{(a)}(b) \tag{2}
$$

- Eigenvalue repulsion in the full model and lack of repulsion in the random XY model
- Convergence to a Gaussian in the random XY model
- Numerical estimate of the error in the random XY model is on the order of $1=n$ where *n* is the number of cubits

Extension by Erdos and Schroder

- Arbitrary graphs with maximal degree total number of edges
	- Gaussian DoS
- \bullet *p*-uniform hypergraphs
	- Correspond to p -spin glass Hamiltonians acting on n distinguishable spin-1/2 particles
	- At $p = n^{1=2}$, phase transition between the normal and the semicircle
	- quantum-classical transition

Summary

Known:

- DoS, spectral gap in (deterministic) XY model
- DoS in a random neighbor-to-neighbor Hamiltonian with XYZ Numerics:
	- DoS in a random XY model
	- Rate of convergence in the random XY model
	- Lack of repulsion

We establish:

- DoS in general bilinear forms of fermionic operators
- spectral gap in special cases

Diagonalizing *M*

Eigenvalue equation: ¹ 2 A B B A 1 2 = 1 2 : Equivalent to: (A ¹ B ² = 21; B ¹ A ² = 22: If ¹ = ¹ ² and ² = ¹ + ², then ((A + B) ¹ = 2 2; (A B) ² = 2 1:

Diagonalizing *M*

\n- Eigenvalue equation:
$$
\frac{1}{2}
$$
 $\begin{pmatrix} A & B & 1 \\ B & A & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$
\n- Equivalent to: $\begin{pmatrix} A & 1 & B & 2 & = 2 & 1 \\ B & 1 & A & 2 & = 2 & 2 \end{pmatrix}$
\n- If $1 = 1$ 2 and $2 = 1 + 2$, then $\begin{pmatrix} (A + B) & 1 & = 2 & 2 \\ (A & B) & 2 & = 2 & 1 \end{pmatrix}$
\n

Note that $(A \quad B)^T = (A + B)$ and hence we get

$$
\frac{1}{4}(A+B)^{T}(A+B)^{-1} = \begin{bmatrix} 2 & 1 \end{bmatrix}
$$

Diagonalizing *M*

\n- Eigenvalue equation:
$$
\frac{1}{2}
$$
 $\begin{pmatrix} A & B & 1 \\ B & A & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$
\n- Equivalent to: $\begin{pmatrix} A & 1 & B & 2 = 2 & 1 \\ B & 1 & A & 2 = 2 & 2 \end{pmatrix}$
\n- If $1 = 1$ 2 and $2 = 1 + 2$, then $\begin{pmatrix} A + B & 1 = 2 & 2 \\ (A & B) & 2 = 2 & 1 \end{pmatrix}$
\n

Note that $(A \quad B)^T = (A + B)$ and hence we get

$$
\frac{1}{4}(A + B)^{T}(A + B)_{1} = \begin{bmatrix} 2 & 1 \end{bmatrix}
$$

2 (M) ()
$$
\frac{p-2}{2}
$$
 is singular value of $\frac{A+B}{2}$.

Need Hermiticity to get new Fermi operators

- \bullet Let U be the orthogonal matrix that diagonalizes M.
- \bullet Then U is a linear canonical transformation in the sense that

$$
U = \begin{array}{cc} G & K \\ G^T & K^T \end{array} \qquad \begin{array}{c} GG^T + KK^T = I_n \\ GK^T + KG^T = 0_n \end{array} \tag{3}
$$

and

$$
U M U^T = \frac{1}{2} \quad 0 \quad ;
$$

with $= diag(\begin{array}{cc} 1, & \cdots, & n \end{array})$, i 0.

Need Hermiticity to get new Fermi operators

- \bullet Let U be the orthogonal matrix that diagonalizes M.
- \bullet Then U is a linear canonical transformation in the sense that

$$
U = \begin{array}{cc} G & K \\ G^T & K^T \end{array} \qquad \begin{array}{c} G G^T + K K^T = I_n \\ G K^T + K G^T = 0_n \end{array} \tag{3}
$$

and

$$
U M U^T = \frac{1}{2} \quad 0 \quad ;
$$

with $= diag(\begin{array}{cc} 1, & \ldots, & n \end{array})$, i 0. Let $k \in k^y$ operators de ned by

Diagonalizing H: Fermi basis

- *j* acts as a lowering operator for $\frac{y}{j}$ *j* i.e. if $\frac{y}{j}$ *j i* = *j i* then y j j j j i $= 0$
- y $_j^{\mathrm y}$ acts as a raising operator for $\left| \begin{array}{cc} j^{\mathrm y} \ j^{\mathrm y} \end{array} \right|$

Diagonalizing H: Fermi basis

- *j* acts as a lowering operator for $\frac{y}{j}$ *j* i.e. if $\frac{y}{j}$ *j i* = *j i* then y j j j j i $= 0$
- y $_j^{\mathrm y}$ acts as a raising operator for $\left| \begin{array}{cc} j^{\mathrm y} \ j^{\mathrm y} \end{array} \right|$
- y $_j^{\rm y}$ $_j$'s commute so there exists a state j $\;$ i which is a simultaneous eigenstate

Diagonalizing H: Fermi basis

- *j* acts as a lowering operator for $\frac{y}{j}$ *j* i.e. if $\frac{y}{j}$ *j i* = *j i* then y j j j j i $= 0$
- y $_j^{\mathrm y}$ acts as a raising operator for $\left| \begin{array}{cc} j^{\mathrm y} \ j^{\mathrm y} \end{array} \right|$
- y $_j^{\rm y}$ $_j$'s commute so there exists a state j $\;$ i which is a simultaneous eigenstate
- \bullet By raising and lowering the state j in all possible combinations, can construct a set of 2^n orthonormal states which are simultaneous eigenstates of the $\frac{y}{j}$ j

Diagonalizing H : subset sums

The spectrum of H is characterized as follows:

$$
\begin{array}{|c|c|c|c|c|}\n\hline\nx & 2 & (H) & (3) & 9S & f1; \dots; ng such that x = c + k: & k2S \\
\hline\n\end{array}
$$
 (4)

where $c = \frac{1}{2}$ $\frac{1}{2}$ $\begin{matrix} n \\ k=1 \end{matrix}$ k

Ground state energy gap: important physical quantity, re
ects how sensitive is the system to perturbations

Theorem 1 For A, B

Ground state energy gap: important physical quantity, re
ects how sensitive is the system to perturbations

Theorem 1

For A, B with iid Gaussian entries up to symmetry, the rescaled energy gap $2n=$ converges in distribution to a random variable whose probability density function is

$$
f(x) = (1 + x)e^{-\frac{x^2}{2}} x
$$

\n• $x_{2^n} = \begin{cases} \nP_n \\ j = 1 \end{cases}$ and $x_{2^n} = \begin{cases} \nP_n \\ j = 2 \end{cases}$ yielding that
\n
$$
x_{2^n} = x_{2^n} - x_{2^n} = \frac{1}{2^n}
$$

- Recall that *j* are singular values of $A + B$
- Result for smallest eigenvalue value of Wishhart matrices by Edelman

 $\overline{2}$

• Note that is very large compared to mean spacing (O(1/n) instead of 2 n)

The relation with iid Bernoullis

Let x_i be the eigenvalues of H . Then

$$
x_j = \frac{1}{2} \times \frac{1}{k \cdot 2s_j} \times \frac{1}{2} \times \frac{1}{k \cdot 2s_j} \times
$$

for some S_j f_1 ; :::; ng. Then

d
$$
n = \frac{1}{2^n} \frac{X^n}{j=1}
$$
 x_j = prob. meas. of $\frac{X^n}{j=1}$ $j(B_j \t 1=2)$

where B_i are *n* independent Bernoulli random variables.

The relation with iid Bernoullis

Let x_i be the eigenvalues of H . Then

$$
x_j = \frac{1}{2} \times \frac{1}{k \cdot 2s_j} \times \frac{1}{2} \times \frac{1}{k \cdot 2s_j} \times
$$

for some S_j f_1 ; :::: ; ng. Then

d
$$
n = \frac{1}{2^n} \sum_{j=1}^{x^n} x_j
$$
 = prob. meas. of $\sum_{j=1}^{x^n} f(B_j - 1=2)$

where B_i are *n* independent Bernoulli random variables.

Details

1 Lindenberg condition states:

- varian_tes _kare nite
- $s_n^2 = \sum_{\substack{k=1 \ n n \neq j}}^n \frac{1}{s_n^2} \frac{1}{k} \in (X_k)^2$ **1** $f_j x_{k,j} > s_n g = 0$
- yields convergence to a Normal distribution with variance s_n for sequences of $\frac{1}{f}$ so that the maximum $\frac{1}{4}$ $\frac{1}{7}$
- will show that the condition on the max is satis ed with $P / 1$ as n ! 1
- α Berry-Esseen estimate yields an error of 1= $^{\!\!\mathcal{D}}\overline{n}$

Details

¹ Lindenberg condition states:

- varian_tes _kare nite
- $s_n^2 = \sum_{\substack{k=1 \ n n \neq j}}^n \frac{1}{s_n^2} \frac{1}{k} \in (X_k)^2$ **1** $f_j x_{k,j} > s_n g = 0$
- \bullet yields convergence to a Normal distribution with variance s_n for sequences of $\frac{1}{f}$ so that the maximum $\frac{1}{4}$ $\frac{1}{7}$
- will show that the condition on the max is satis ed with P/I as n ! 1
- α Berry-Esseen estimate yields an error of 1= $^{\!\!\mathcal{D}}\overline{n}$
- ² For the computation of the Fourier transform :
	- **D** Fourier transform of $\frac{1}{\sqrt{n}}$ $j(B_j \quad 1=2)$ is cos $\frac{t-j}{2}$
	- **•** Fourier transform of the DoS is then $\frac{1}{j}$ cos $\frac{t_{Dj}}{2^{D-1}}$

Random Matrix Theory

Have to show that n $\overline{\rho}_{\overline{n}}$ when $^{-2}$ of matrix entries is 1=N

Our Numerics

Figure: Spacing distribution for the unfolded spectrum.

Our Numerics

Figure: Density of states and ground state energy gap distribution for Gaussian quadratic form of Fermi operator. Here $n = 16$ (for a sample size of about 50).

Future study

Further questions we want to examine:

- Rate of convergence can probably be improved.
- The bottom eigenvalue of a band covariance matrix.
- In the bulk, the eigenvalues appear to form a Poisson process on the line.
- Speculation: relation to the Berry-Tabor conjecture. Generic integrable system) Poisson statistics

Thank you!